If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-18y+22=0
a = 2; b = -18; c = +22;
Δ = b2-4ac
Δ = -182-4·2·22
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{37}}{2*2}=\frac{18-2\sqrt{37}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{37}}{2*2}=\frac{18+2\sqrt{37}}{4} $
| 4t+2=7t-8.5 | | 9v+10=7v | | 130+0.80x=50+0.90x | | 2y^2-18y+44=0 | | 16x-24=12x+12 | | 3(x+-4)-2(3x+4)=4(3+-1x)+5x+4 | | 12y=-12+10y | | -8-x+3=19 | | 7x+5=13x-31 | | 32-x+9=140 | | 3(x-4)-2(3x+4)=4(3x-x)+5x+4 | | 5/6x+57=-63 | | y^2-22y+18=0 | | 9z-11=-4 | | .33x+86=2x+1 | | 10^x+3=250 | | 2(x+1)-4=4-x | | -5/9x+57=-63 | | 2(x-9)-6=-7(-2x+3)-3x | | 14.99x-2.50=13.49-1 | | -13=-x+5=8 | | 1÷3x+86=2x+1 | | (3x+11)+(x+16)+x=180 | | (-16)+3n=(-8)-5n | | W2-9w-20=0 | | 1+x/1=1 | | 2(x+2)+3=3x | | 10x-(2x+9)=-3(15-4x0 | | 10x-13x+6=180 | | 4n^2-40n+64=0 | | -3x+39=9(x+3) | | -28-8n=4(-2n-7) |